API  4.3
For MATLAB, Python, Java, and C++ users
exampleMinimizeJointReaction.m

This is an example of MocoJointReactionGoal.

% -------------------------------------------------------------------------- %
% OpenSim Moco: exampleMinimizeJointReaction.m %
% -------------------------------------------------------------------------- %
% Copyright (c) 2017 Stanford University and the Authors %
% %
% Author(s): Nicholas Bianco %
% %
% Licensed under the Apache License, Version 2.0 (the "License"); you may %
% not use this file except in compliance with the License. You may obtain a %
% copy of the License at http://www.apache.org/licenses/LICENSE-2.0 %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% -------------------------------------------------------------------------- %
function exampleMinimizeJointReaction()
import org.opensim.modeling.*;
% Control effort minimization problem.
% ====================================
% This problem minimizes the squared control effort, integrated over the phase.
effort = MocoControlGoal();
runInvertedPendulumProblem('minimize_control_effort', effort);
% Joint reaction load minimization problem.
% =========================================
% This problem minimizes the reaction loads on the rotating body at the pin
% joint. Specifically, the norm of the reaction forces and moments integrated
% over the phase is minimized.
reaction = MocoJointReactionGoal();
reaction.setJointPath('pin');
runInvertedPendulumProblem('minimize_joint_reaction_loads', reaction);
end
function solution = runInvertedPendulumProblem(name, goal)
import org.opensim.modeling.*;
% Create the inverted pendulum model.
% ===================================
model = createInvertedPendulumModel();
% Create MocoStudy.
% ================
study = MocoStudy();
% The name of the study is used as part of the file name for the solution.
study.setName(name);
% Define the optimal control problem.
% ===================================
problem = study.updProblem();
% Model (dynamics).
% -----------------
problem.setModel(model);
% Bounds.
% -------
% Initial time must be zero, final time must be 1.
problem.setTimeBounds(MocoInitialBounds(0), MocoFinalBounds(1));
% Initial position must be 0, final position must be 180 degrees.
problem.setStateInfo('/pin/angle/value', MocoBounds(-10, 10), ...
MocoInitialBounds(0), MocoFinalBounds(pi));
% Initial and final speed must be 0. Use compact syntax.
problem.setStateInfo('/pin/angle/speed', [-50, 50], [0], [0]);
% Applied moment must be between -100 and 100 N-m.
problem.setControlInfo('/forceset/actuator', MocoBounds(-100, 100));
% Goal.
% -----
problem.addGoal(goal);
% Configure the solver.
% =====================
solver = study.initCasADiSolver();
solver.set_num_mesh_intervals(50);
solver.set_optim_convergence_tolerance(1e-3);
% Now that we've finished setting up the tool, print it to a file.
study.print([name '.omoco']);
% Solve the problem.
% ==================
solution = study.solve();
solution.write([name '_solution.sto']);
% Visualize.
% ==========
% The following environment variable is set during automated testing.
if ~strcmp(getenv('OPENSIM_USE_VISUALIZER'), '0')
study.visualize(solution);
end
% Plot results.
% =============
figure;
% Plot states trajectory solution.
% --------------------------------
subplot(3,1,1);
time = solution.getTimeMat();
plot(time, solution.getStatesTrajectoryMat())
xlabel('time (s)')
ylabel('states')
legend('pin/angle/value', 'pin/angle/speed')
title(strrep(name, '_', ' '))
% Plot controls trajectory solution.
% ----------------------------------
subplot(3,1,2)
plot(time, solution.getControlsTrajectoryMat())
xlabel('time (s)')
ylabel('control')
legend('actuator')
% Plot trajectory of the norm of the joint reaction loads.
% --------------------------------------------------------
statesTraj = solution.exportToStatesTrajectory(problem);
% This function adds the solution controls as prescribed controllers to the
% model. This ensures that the correct reaction loads are computed when
% realizing to acceleration.
opensimMoco.prescribeControlsToModel(solution, model);
model.initSystem();
% Compute reaction loads.
jointReactionNorm = zeros(size(time));
for i = 1:length(time)
state = statesTraj.get(i-1);
% Need to realize to acceleration for the reaction loads.
model.realizeAcceleration(state);
joint = PinJoint().safeDownCast(model.getComponent('pin'));
reactionLoadsSpatialVec = ...
joint.calcReactionOnChildExpressedInGround(state);
% Convert the reaction load SpatialVec to a usable format.
reactionLoadsFlat = flattenSpatialVec(reactionLoadsSpatialVec);
% Compute the norm.
jointReactionNorm(i) = norm(reactionLoadsFlat);
end
subplot(3,1,3);
plot(time, jointReactionNorm)
integralJointReactionNorm = trapz(time, jointReactionNorm)
xlabel('time (s)')
ylabel('norm reaction loads')
end
function model = createInvertedPendulumModel()
import org.opensim.modeling.*;
model = Model();
model.setName('inverted_pendulum');
body = Body('body', 1.0, Vec3(0), Inertia(1));
model.addComponent(body);
joint = PinJoint('pin', model.getGround(), Vec3(0), Vec3(0), ...
body, Vec3(-1, 0, 0), Vec3(0));
coord = joint.updCoordinate();
coord.setName('angle');
model.addComponent(joint);
actu = CoordinateActuator();
actu.setCoordinate(coord);
actu.setName('actuator');
actu.setOptimalForce(1);
model.addForce(actu);
geom = Ellipsoid(0.5, 0.1, 0.1);
transform = Transform(Vec3(-0.5, 0, 0));
body_center = PhysicalOffsetFrame('body_center', body, transform);
body.addComponent(body_center);
body_center.attachGeometry(geom);
model.finalizeConnections();
end
function spatialVecFlat = flattenSpatialVec(spatialVec)
spatialVecFlat = zeros(6,1);
spatialVecFlat(1) = spatialVec.get(0).get(0);
spatialVecFlat(2) = spatialVec.get(0).get(1);
spatialVecFlat(3) = spatialVec.get(0).get(2);
spatialVecFlat(4) = spatialVec.get(1).get(0);
spatialVecFlat(5) = spatialVec.get(1).get(1);
spatialVecFlat(6) = spatialVec.get(1).get(2);
end