API  4.3
For MATLAB, Python, Java, and C++ users
exampleSquatToStand_answers.m

This is an example that predicts a squat-to-stand movement and optimizes the stiffness of an assistive passive device.

function exampleSquatToStand_answers
%% Part 0: Load the Moco libraries and pre-configured Models.
import org.opensim.modeling.*;
% These models are provided for you (i.e., they are not part of Moco).
torqueDrivenModel = getTorqueDrivenModel();
muscleDrivenModel = getMuscleDrivenModel();
%% Part 1: Torque-driven Predictive Problem
% Part 1a: Create a new MocoStudy.
study = MocoStudy();
% Part 1b: Initialize the problem and set the model.
problem = study.updProblem();
problem.setModel(torqueDrivenModel);
% Part 1c: Set bounds on the problem.
%
% problem.setTimeBounds(initial_bounds, final_bounds)
% problem.setStateInfo(path, trajectory_bounds, inital_bounds, final_bounds)
%
% All *_bounds arguments can be set to a range, [lower upper], or to a
% single value (equal lower and upper bounds). Empty brackets, [], indicate
% using default bounds (if they exist). You may set multiple state infos at
% once using setStateInfoPattern():
%
% problem.setStateInfoPattern(pattern, trajectory_bounds, inital_bounds, ...
% final_bounds)
%
% This function supports regular expressions in the 'pattern' argument;
% use '.*' to match any substring of the state/control path
% For example, the following will set all coordinate value state infos:
%
% problem.setStateInfoPattern('/path/to/states/.*/value', ...)
% Time bounds
problem.setTimeBounds(0, 1);
% Position bounds: the model should start in a squat and finish
% standing up.
problem.setStateInfo('/jointset/hip_r/hip_flexion_r/value', ...
[-2, 0.5], -2, 0);
problem.setStateInfo('/jointset/knee_r/knee_angle_r/value', ...
[-2, 0], -2, 0);
problem.setStateInfo('/jointset/ankle_r/ankle_angle_r/value', ...
[-0.5, 0.7], -0.5, 0);
% Velocity bounds: all model coordinates should start and end at rest.
problem.setStateInfoPattern('/jointset/.*/speed', [], 0, 0);
% Part 1d: Add a MocoControlGoal to the problem.
problem.addGoal(MocoControlGoal('myeffort'));
% Part 1e: Configure the solver.
solver = study.initCasADiSolver();
solver.set_num_mesh_intervals(25);
solver.set_optim_convergence_tolerance(1e-4);
solver.set_optim_constraint_tolerance(1e-4);
if ~exist('predictSolution.sto', 'file')
% Part 1f: Solve! Write the solution to file, and visualize.
predictSolution = study.solve();
predictSolution.write('predictSolution.sto');
study.visualize(predictSolution);
end
%% Part 2: Torque-driven Tracking Problem
% Part 2a: Construct a tracking reference TimeSeriesTable using filtered
% data from the previous solution. Use a TableProcessor, which accepts a
% base table and allows appending operations to modify the table.
tableProcessor = TableProcessor('predictSolution.sto');
tableProcessor.append(TabOpLowPassFilter(6));
% Part 2b: Add a MocoStateTrackingCost to the problem using the states
% from the predictive problem (via the TableProcessor we just created).
% Enable the setAllowUnusedReferences() setting to ignore the controls in
% the predictive solution.
tracking = MocoStateTrackingGoal();
tracking.setName('mytracking');
tracking.setReference(tableProcessor);
tracking.setAllowUnusedReferences(true);
problem.addGoal(tracking);
% Part 2c: Reduce the control goal weight so it now acts as a regularization
% term.
problem.updGoal('myeffort').setWeight(0.001);
% Part 2d: Set the initial guess using the predictive problem solution.
% Tighten convergence tolerance to ensure smooth controls.
solver.setGuessFile('predictSolution.sto');
solver.set_optim_convergence_tolerance(1e-6);
if ~exist('trackingSolution.sto', 'file')
% Part 2e: Solve! Write the solution to file, and visualize.
trackingSolution = study.solve();
trackingSolution.write('trackingSolution.sto');
study.visualize(trackingSolution);
end
%% Part 3: Compare Predictive and Tracking Solutions
% This is a convenience function provided for you. See mocoPlotTrajectory.m
mocoPlotTrajectory('predictSolution.sto', 'trackingSolution.sto', ...
'predict', 'track');
%% Part 4: Muscle-driven Inverse Problem
% Create a MocoInverse tool instance.
inverse = MocoInverse();
% Part 4a: Provide the model via a ModelProcessor. Similar to the TableProcessor,
% you can add operators to modify the base model.
modelProcessor = ModelProcessor(muscleDrivenModel);
modelProcessor.append(ModOpAddReserves(2));
inverse.setModel(modelProcessor);
% Part 4b: Set the reference kinematics using the same TableProcessor we used
% in the tracking problem.
inverse.setKinematics(tableProcessor);
% Part 4c: Set the time range, mesh interval, and convergence tolerance.
inverse.set_initial_time(0);
inverse.set_final_time(1);
inverse.set_mesh_interval(0.05);
inverse.set_convergence_tolerance(1e-4);
inverse.set_constraint_tolerance(1e-4);
% Allow extra (unused) columns in the kinematics and minimize activations.
inverse.set_kinematics_allow_extra_columns(true);
inverse.set_minimize_sum_squared_activations(true);
% Append additional outputs path for quantities that are calculated
% post-hoc using the inverse problem solution.
inverse.append_output_paths('.*normalized_fiber_length');
inverse.append_output_paths('.*passive_force_multiplier');
% Part 4d: Solve! Write the MocoSolution to file.
inverseSolution = inverse.solve();
inverseSolution.getMocoSolution().write('inverseSolution.sto');
% Part 4e: Get the outputs we calculated from the inverse solution.
inverseOutputs = inverseSolution.getOutputs();
STOFileAdapter.write(inverseOutputs, 'muscleOutputs.sto');
%% Part 5: Muscle-driven Inverse Problem with Passive Assistance
% Part 5a: Create a new muscle-driven model, now adding a SpringGeneralizedForce
% about the knee coordinate.
device = SpringGeneralizedForce('knee_angle_r');
device.setStiffness(50);
device.setRestLength(0);
device.setViscosity(0);
muscleDrivenModel.addForce(device);
% Part 5b: Create a ModelProcessor similar to the previous one, using the same
% reserve actuator strength so we can compare muscle activity accurately.
modelProcessor = ModelProcessor(muscleDrivenModel);
modelProcessor.append(ModOpAddReserves(2));
inverse.setModel(modelProcessor);
% Part 5c: Solve! Write solution.
inverseDeviceSolution = inverse.solve();
inverseDeviceSolution.getMocoSolution().write('inverseDeviceSolution.sto');
%% Part 6: Compare unassisted and assisted Inverse Problems.
fprintf('Cost without device: %f\n', ...
inverseSolution.getMocoSolution().getObjective());
fprintf('Cost with device: %f\n', ...
inverseDeviceSolution.getMocoSolution().getObjective());
% This is a convenience function provided for you. See below for the
% implementation.
compareInverseSolutions(inverseSolution, inverseDeviceSolution);
end
%% Model Creation and Plotting Convenience Functions
function addCoordinateActuator(model, coordName, optForce)
import org.opensim.modeling.*;
coordSet = model.updCoordinateSet();
actu = CoordinateActuator();
actu.setName(['tau_' coordName]);
actu.setCoordinate(coordSet.get(coordName));
actu.setOptimalForce(optForce);
actu.setMinControl(-1);
actu.setMaxControl(1);
model.addComponent(actu);
end
function [model] = getTorqueDrivenModel()
import org.opensim.modeling.*;
% Load the base model.
model = Model('squatToStand_3dof9musc.osim');
% Remove the muscles in the model.
model.updForceSet().clearAndDestroy();
model.initSystem();
% Add CoordinateActuators to the model degrees-of-freedom.
addCoordinateActuator(model, 'hip_flexion_r', 150);
addCoordinateActuator(model, 'knee_angle_r', 300);
addCoordinateActuator(model, 'ankle_angle_r', 150);
end
function [model] = getMuscleDrivenModel()
import org.opensim.modeling.*;
% Load the base model.
model = Model('squatToStand_3dof9musc.osim');
model.finalizeConnections();
% Replace the muscles in the model with muscles from DeGroote, Fregly,
% et al. 2016, "Evaluation of Direct Collocation Optimal Control Problem
% Formulations for Solving the Muscle Redundancy Problem". These muscles
% have the same properties as the original muscles but their characteristic
% curves are optimized for direct collocation (i.e. no discontinuities,
% twice differentiable, etc).
DeGrooteFregly2016Muscle().replaceMuscles(model);
% Make problems easier to solve by strengthening the model and widening the
% active force-length curve.
for m = 0:model.getMuscles().getSize()-1
musc = model.updMuscles().get(m);
musc.setMinControl(0);
musc.set_ignore_activation_dynamics(false);
musc.set_ignore_tendon_compliance(false);
musc.set_max_isometric_force(2 * musc.get_max_isometric_force());
dgf = DeGrooteFregly2016Muscle.safeDownCast(musc);
dgf.set_active_force_width_scale(1.5);
dgf.set_tendon_compliance_dynamics_mode('implicit');
if strcmp(char(musc.getName()), 'soleus_r')
% Soleus has a very long tendon, so modeling its tendon as rigid
% causes the fiber to be unrealistically long and generate
% excessive passive fiber force.
dgf.set_ignore_passive_fiber_force(true);
end
end
end
function compareInverseSolutions(unassistedSolution, assistedSolution)
unassistedSolution = unassistedSolution.getMocoSolution();
assistedSolution = assistedSolution.getMocoSolution();
figure;
stateNames = unassistedSolution.getStateNames();
numStates = stateNames.size();
dim = 3;
iplot = 0;
for i = 0:numStates-1
if contains(char(stateNames.get(i)), 'activation')
iplot = iplot + 1;
subplot(dim, dim, iplot);
plot(unassistedSolution.getTimeMat(), ...
unassistedSolution.getStateMat(stateNames.get(i)), '-r', ...
'linewidth', 3);
hold on
plot(assistedSolution.getTimeMat(), ...
assistedSolution.getStateMat(stateNames.get(i)), '--b', ...
'linewidth', 2.5);
hold off
stateName = stateNames.get(i);
plotTitle = stateName;
plotTitle = strrep(plotTitle, '/forceset/', '');
plotTitle = strrep(plotTitle, '/activation', '');
title(plotTitle, 'Interpreter', 'none');
xlabel('time (s)');
ylabel('activation (-)');
ylim([0, 1]);
if iplot == 0
legend('unassisted', 'assisted');
end
end
end
end