API 4.4.1-2022-10-19-2c4045e59
For MATLAB, Python, Java, and C++ users
exampleIMUTracking_answers.m

This is an example that uses a squat-to-stand motion to create synthetic accelerometer data, and then creates a tracking simulation to track the synthetic accelerometer signals.

function exampleIMUTracking_answers
clc; clear; close all;
%% Part 0: Load the Moco libraries.
addpath('../'); % Add the directory above to access mocoPlotTrajectory.m
import org.opensim.modeling.*;
%% Part 1: Load model and add IMU frames.
% Part 1a: Load a torque-driven, 3 degree-of-freedom model with a single leg
% and foot welded to the floor. See the function definition at the bottom of
% this file to see how the model is loaded and constructed.
model = getTorqueDrivenSquatToStandModel();
% Part 1b: Add frames to the model that will represent our IMU locations.
% The function addIMUFrame() adds a PhysicalOffsetFrame to a body at a
% specified location and orientation. Each frame is added at the path:
%
% /bodyset/<body_name>/<body_name>_imu_offset
%
addIMUFrame(model, 'torso', Vec3(0.08, 0.3, 0), Vec3(0, 0.5*pi, 0.5*pi));
addIMUFrame(model, 'femur_r', Vec3(0, -0.2, 0.05), Vec3(0, 0, 0.5*pi));
addIMUFrame(model, 'tibia_r', Vec3(0, -0.2, 0.05), Vec3(0, 0, 0.5*pi));
% Part 1c: Add IMU components to the model using the PhysicalOffsetFrames
% we just added to the model. We'll use the helper function addModelIMUs()
% included with OpenSenseUtilities.
imuFramePaths = StdVectorString();
imuFramePaths.add('/bodyset/torso/torso_imu_offset');
imuFramePaths.add('/bodyset/femur_r/femur_r_imu_offset');
imuFramePaths.add('/bodyset/tibia_r/tibia_r_imu_offset');
OpenSenseUtilities().addModelIMUs(model, imuFramePaths);
model.initSystem();
%% Part 2: Solve an effort minimization predictive problem
% Generate a simulation of a squat-to-stand motion that minimizes control
% effort. We'll use the results from this simulation to compute a set of
% "synthetic" accelerometer signals later.
% Part 2a: Create a new MocoStudy.
study = MocoStudy();
% Part 2b: Initialize the problem and set the model.
problem = study.updProblem();
problem.setModel(model);
% Part 2c: Set bounds on the problem.
%
% problem.setTimeBounds(initial_bounds, final_bounds)
% problem.setStateInfo(path, trajectory_bounds, inital_bounds, final_bounds)
%
% All *_bounds arguments can be set to a range, [lower upper], or to a
% single value (equal lower and upper bounds). Empty brackets, [], indicate
% using default bounds (if they exist). You may set multiple state infos at
% once using setStateInfoPattern():
%
% problem.setStateInfoPattern(pattern, trajectory_bounds, inital_bounds, ...
% final_bounds)
%
% This function supports regular expressions in the 'pattern' argument;
% use '.*' to match any substring of the state/control path
% For example, the following will set all coordinate value state infos:
%
% problem.setStateInfoPattern('/path/to/states/.*/value', ...)
% Time bounds
problem.setTimeBounds(0, 1);
% Position bounds: the model should start in a squat and finish
% standing up.
problem.setStateInfo('/jointset/hip_r/hip_flexion_r/value', ...
[-2, 0.5], -2, 0);
problem.setStateInfo('/jointset/knee_r/knee_angle_r/value', ...
[-2, 0], -2, 0);
problem.setStateInfo('/jointset/ankle_r/ankle_angle_r/value', ...
[-0.5, 0.7], -0.5, 0);
% Velocity bounds: all model coordinates should start and end at rest.
problem.setStateInfoPattern('/jointset/.*/speed', [], 0, 0);
% Part 2d: Add a MocoControlGoal to the problem.
problem.addGoal(MocoControlGoal('myeffort'));
% Part 2e: Configure the solver.
solver = study.initCasADiSolver();
solver.set_num_mesh_intervals(25);
solver.set_optim_constraint_tolerance(1e-4);
solver.set_optim_convergence_tolerance(1e-4);
if ~exist('predictSolution.sto', 'file')
% Part 2f: Solve! Write the solution to file, and visualize.
predictSolution = study.solve();
predictSolution.write('predictSolution.sto');
study.visualize(predictSolution);
end
%% Part 3: Compute synthetic accelerometer signals
% In this step, we'll create a set of synthetic accelerometer signals that
% replicate the output of an IMU sensor. To do this, we'll use the
% 'accelerometer_signal' Output included with the IMU components we
% previously added to the model.
% Part 3a: Load the prediction solution.
predictSolution = MocoTrajectory('predictSolution.sto');
% Part 3b: Compute the accelerometer signals using the analyzeVec3() free
% function included with SimulationUtilities. These free functions can be
% accessed in scripting by using the 'opensimSimulation' prefix.
outputPaths = StdVectorString();
outputPaths.add('.*accelerometer_signal');
accelerometerSignals = opensimSimulation.analyzeVec3(model, ...
predictSolution.exportToStatesTable(), ...
predictSolution.exportToControlsTable(), ...
outputPaths);
% Part 3c: Update the column labels of the accelerometer signals to match
% the offset frame paths. This is necessary for the tracking goal we'll add
% to the problem in Part 4.
accelerometerSignals.setColumnLabels(imuFramePaths);
% Part 3d: Plot the synthetic acceleration signals.
plotAccelerationSignals(accelerometerSignals);
%% Part 4: Synthetic acceleration tracking problem
% Part 4a: Add a MocoAccelerationTrackingGoal to the MocoProblem. Set the
% frame paths to the IMU offset frame paths and set the accelerations
% reference to the synthetic accelerometer signals we calculated above.
% We need to subtract the gravitational acceleration vector and re-express
% the accelerations in the tracking frames so that the model-computed
% values in the tracking cost match the accelerometer signals.
tracking = MocoAccelerationTrackingGoal('acceleration_tracking');
tracking.setFramePaths(imuFramePaths);
tracking.setAccelerationReference(accelerometerSignals);
tracking.setGravityOffset(true);
tracking.setExpressAccelerationsInTrackingFrames(true);
problem.addGoal(tracking);
% Part 4b: Reduce the control cost weight so that the tracking term will
% dominate.
problem.updGoal('myeffort').setWeight(0.001);
if ~exist('trackingSolution.sto', 'file')
% Part 4c: Solve! Write the solution to file, and visualize.
trackingSolution = study.solve();
trackingSolution.write('trackingSolution.sto');
study.visualize(trackingSolution);
end
%% Part 5: Compare tracking solution to original prediction
% Part 5a: Plot the tracking solution against the prediction. This is a
% convenience function provided for you. See mocoPlotTrajectory.m
mocoPlotTrajectory('predictSolution.sto', 'trackingSolution.sto', ...
'predict', 'track');
% Part 5b: Compare accelerations from tracking solution to the reference
% accelerations.
trackingSolution = MocoTrajectory('trackingSolution.sto');
accelerometerSignalsTracking = opensimSimulation.analyzeVec3(model, ...
trackingSolution.exportToStatesTable(), ...
trackingSolution.exportToControlsTable(), ...
outputPaths);
accelerometerSignalsTracking.setColumnLabels(imuFramePaths);
plotAccelerationSignals(accelerometerSignals, accelerometerSignalsTracking)
end
%% Model Creation and Plotting Convenience Functions
function addCoordinateActuator(model, coordName, optForce)
import org.opensim.modeling.*;
coordSet = model.updCoordinateSet();
actu = CoordinateActuator();
actu.setName(['tau_' coordName]);
actu.setCoordinate(coordSet.get(coordName));
actu.setOptimalForce(optForce);
actu.setMinControl(-1);
actu.setMaxControl(1);
% Add to ForceSet
model.addForce(actu);
end
function [model] = getTorqueDrivenSquatToStandModel()
import org.opensim.modeling.*;
% Load the base model.
model = Model('../squatToStand_3dof9musc.osim');
% Remove the muscles in the model.
model.updForceSet().clearAndDestroy();
model.initSystem();
% Add CoordinateActuators to the model degrees-of-freedom.
addCoordinateActuator(model, 'hip_flexion_r', 150);
addCoordinateActuator(model, 'knee_angle_r', 300);
addCoordinateActuator(model, 'ankle_angle_r', 150);
end
function addIMUFrame(model, bodyName, translation, orientation)
import org.opensim.modeling.*;
body = model.updBodySet().get(bodyName);
name = [char(body.getName()) '_imu_offset'];
bodyOffset = PhysicalOffsetFrame(name, body, Transform());
bodyOffset.set_translation(translation);
bodyOffset.set_orientation(orientation);
body.addComponent(bodyOffset);
model.finalizeConnections();
end
function plotAccelerationSignals(varargin)
import org.opensim.modeling.*;
accelerationsReference = varargin{1};
if nargin == 2
accelerationsTracking = varargin{2};
end
% Create a time vector that can be used for plotting
timeVec = accelerationsReference.getIndependentColumn();
time = zeros(timeVec.size(),1);
for i = 1:timeVec.size()
time(i) = timeVec.get(i-1);
end
figure;
% Plot the torso accelerations
subplot(1,3,1)
torso = accelerationsReference.getDependentColumn(...
'/bodyset/torso/torso_imu_offset').getAsMat();
plot(time, torso(:,1), 'r-', 'linewidth', 3)
if nargin == 2
hold on
torsoTrack = accelerationsTracking.getDependentColumn(...
'/bodyset/torso/torso_imu_offset').getAsMat();
plot(time, torsoTrack(:,1), 'b--', 'linewidth', 3)
end
if nargin == 2
legend('predict', 'track', 'location', 'best');
end
title('torso')
xlabel('time (s)')
ylabel('acceleration (m/s^2)')
% Plot the femur accelerations
subplot(1,3,2)
femur = accelerationsReference.getDependentColumn(...
'/bodyset/femur_r/femur_r_imu_offset').getAsMat();
plot(time, femur(:,1), 'r-', 'linewidth', 3)
if nargin == 2
hold on
femurTrack = accelerationsTracking.getDependentColumn(...
'/bodyset/femur_r/femur_r_imu_offset').getAsMat();
plot(time, femurTrack(:,1), 'b--', 'linewidth', 3)
end
title('femur')
xlabel('time (s)')
ylabel('acceleration (m/s^2)')
% Plot the tibia accelerations
subplot(1,3,3)
tibia = accelerationsReference.getDependentColumn(...
'/bodyset/tibia_r/tibia_r_imu_offset').getAsMat();
plot(time, tibia(:,1), 'r-', 'linewidth', 3)
if nargin == 2
hold on
tibiaTrack = accelerationsTracking.getDependentColumn(...
'/bodyset/tibia_r/tibia_r_imu_offset').getAsMat();
plot(time, tibiaTrack(:,1), 'b--', 'linewidth', 3)
end
title('tibia')
xlabel('time (s)')
ylabel('acceleration (m/s^2)')
end