OpenSim Moco
0.4.0
|
This function takes initial states/controls, final states/controls, and an integral.
#include <Moco/Moco/MocoCasADiSolver/CasOCFunction.h>
Public Member Functions | |
void | constructFunction (const Problem *casProblem, const std::string &name, int index, int numEquations, const std::string &finiteDiffScheme, std::shared_ptr< const std::vector< VariablesDM >> pointsForSparsityDetection) |
casadi_int | get_n_in () override |
std::string | get_name_in (casadi_int i) override final |
casadi::Sparsity | get_sparsity_in (casadi_int i) override |
casadi_int | get_n_out () override final |
std::string | get_name_out (casadi_int i) override final |
casadi::Sparsity | get_sparsity_out (casadi_int i) override final |
casadi::DM | getSubsetPoint (const VariablesDM &fullPoint) const override |
The endpoint input is not simply a subset of the NLP variables; the endpoint function also depends on an integral, computed from an integrand function and using a transcription's quadrature scheme. More... | |
Public Member Functions inherited from CasOC::Function | |
void | constructFunction (const Problem *casProblem, const std::string &name, const std::string &finiteDiffScheme, std::shared_ptr< const std::vector< VariablesDM >> pointsForSparsityDetection) |
void | setCommonOptions (casadi::Dict &opts) |
std::string | getFiniteDifferenceScheme () |
casadi_int | get_n_in () override |
std::string | get_name_in (casadi_int i) override |
casadi::Sparsity | get_sparsity_in (casadi_int i) override |
bool | has_jacobian_sparsity () const override |
casadi::Sparsity | get_jacobian_sparsity () const override |
Protected Attributes | |
int | m_index = -1 |
int | m_numEquations = -1 |
Protected Attributes inherited from CasOC::Function | |
const Problem * | m_casProblem |
|
inlineoverridevirtual |
The endpoint input is not simply a subset of the NLP variables; the endpoint function also depends on an integral, computed from an integrand function and using a transcription's quadrature scheme.
Ideally, the value for the integral would be computed properly from the provided point, but applying the integrand function and quadrature scheme here is complicated. For simplicity, we provide the integral as 0.
Reimplemented from CasOC::Function.